Traumatic Brain Injury

Focused Ultrasound Therapy

Clinical Trials SquareFocused ultrasound is an early-stage, noninvasive, therapeutic technology with the potential to improve the quality of life and decrease the cost of care for patients with traumatic brain injury. This novel technology focuses beams of ultrasound energy precisely and accurately on targets deep in the brain without damaging surrounding normal tissue. Where the beams converge, the ultrasound can produce a variety of results that are being evaluated in preclinical studies. These include FUS-induced neuromodulation (stimulating or blocking neural activity) and temporary disruption of the blood-brain barrier, which can enable stem cell delivery to the brain.

The primary options for treatment of traumatic brain injury include initial stabilization measures, followed by specific treatment of the injuries involved. These may include medication and surgery.

For certain patients, focused ultrasound may be able to provide a noninvasive alternative to surgery with less risk of complications and lower cost.

Advantages:

  • Focused ultrasound is noninvasive, so it does not carry added concerns like surgical wound healing or infection.
  • Focused ultrasound can reach the desired target without damaging surrounding tissue.
  • It can be repeated, if necessary.

Clinical Trials

A clinical trial in Los Angeles is looking to use thalamic low intensity focused ultrasound in acute brain injured patients. 

See a full list of clinical trials for traumatic brain injury.

See a list of laboratory research sites >

Regulatory Approval and Reimbursement

Focused ultrasound treatment for traumatic brain injury is not yet approved by regulatory bodies or covered by medical insurance companies.

Notable Papers

Shen WB, Anastasiadis P, Nguyen B, Yarnell D, Yarowsky PJ, Frenkel V, Fishman PS. Magnetic Enhancement of Stem Cell-Targeted Delivery into the Brain Following MR-Guided Focused Ultrasound for Opening the Blood-Brain Barrier. Cell Transplant. 2017 Jul;26(7):1235-1246. doi: 10.1177/0963689717715824.

McCutcheon V, Park E, Liu E, Sobhebidari P, Tavakkoli J, Wen XY, Baker AJ. A Novel Model of Traumatic Brain Injury in Adult Zebrafish Demonstrates Response to Injury and Treatment Comparable with Mammalian Models. J Neurotrauma. 2017 Apr 1;34(7):1382-1393. doi: 10.1089/neu.2016.4497. Epub 2016 Dec 20.

McCutcheon V, Park E, Liu E, Sobhe Bidari P, Tavakkoli J, Wen XY, Baker AJ. A novel model of traumatic brain injury in adult zebrafish demonstrates response to injury and treatment comparable with mammalian models. J Neurotrauma. 2016 Sep 20.

Neren D, Johnson MD, Legon W, Bachour SP, Ling G, Divani AA. Vagus Nerve Stimulation and Other Neuromodulation Methods for Treatment of Traumatic Brain Injury. Neurocrit Care. 2016 Apr;24(2):308-19. doi: 10.1007/s12028-015-0203-0.

Fisher J, Huang S, Ye M, Nabili M, Wilent W, Krauthamer V, Myers M, Welle C. Real-Time Detection and Monitoring of Acute Brain Injury Utilizing Evoked Electroencephalographic Potentials. IEEE Trans Neural Syst Rehabil Eng. 2016 Mar 1.

Click here for additional references from PubMed.