Stroke

Focused Ultrasound Therapy

Early Stage squareFocused ultrasound is an early-stage, noninvasive, therapeutic technology with the potential to improve the quality of life and decrease the cost of care for patients with both ischemic and hemorrhagic stroke. This novel technology focuses beams of ultrasound energy precisely and accurately on targets deep in the brain without damaging surrounding normal tissue. Where the beams converge, the ultrasound can produce a variety of therapeutic effects. The use of focused ultrasound for disrupting blood clots, inducing reperfusion of occluded vessels, and temporarily opening the blood-brain barrier to allow entry of stem cells to populate the area of the stroke are all early stage ideas for treating patients with stroke. More work is needed to optimize these biomechanisms of focused ultrasound before research can reach the clinic.

The primary options for treatment of stroke include medications with the possible inclusion of surgery.

For certain patients, focused ultrasound could provide additional treatment options or a noninvasive alternative to surgery that may have reduced complications and a lower cost.

Advantages:

  • Focused ultrasound is noninvasive, so it does not carry added concerns like surgical wound healing or infection.
  • Focused ultrasound can reach the desired target without damaging surrounding tissue.
  • Focused ultrasound can be repeated, if necessary.

Clinical Trials

At the present time, there are no clinical trials recruiting patients for focused ultrasound treatment of stroke.

Regulatory Approval and Reimbursement

Focused ultrasound treatment for stroke is not yet approved by regulatory bodies or covered by medical insurance companies.

Notable Papers

Ischemic Stroke

Ilyas A, Chen CJ, Ding D, Romeo A, Buell TJ, Wang TR, Kalani MYS, Park MS. Magnetic resonance-guided, high-intensity focused ultrasound sonolysis: potential applications for stroke. Neurosurg Focus. 2018 Feb;44(2):E12. doi: 10.3171/2017.11.FOCUS17608.

Li H, Sun J, Zhang D, Omire-Mayor D, Lewin PA, Tong S. Low-intensity (400 mW/cm2, 500 kHz) pulsed transcranial ultrasound preconditioning may mitigate focal cerebral ischemia in rats. Brain Stimul. 2017 Feb 27. pii: S1935-861X(17)30615-0. doi: 10.1016/j.brs.2017.02.008.

Yang W, Zhou Y. Effect of pulse repetition frequency of high-intensity focused ultrasound on in vitro thrombolysis. Ultrason Sonochem. 2017 Mar;35(Pt A):152-160. doi: 10.1016/j.ultsonch.2016.09.014.

Papadopoulos N, Yiallouras C, Damianou C. The Enhancing Effect of Focused Ultrasound on TNK-Tissue Plasminogen Activator-Induced Thrombolysis Using an In Vitro Circulating Flow Model. J Stroke Cerebrovasc Dis. 2016 Sep 2. pii: S1052-3057(16)30270-1. doi: 10.1016/j.jstrokecerebrovasdis.2016.07.052.

Papadopoulos N, Damianou C. In Vitro Evaluation of Focused Ultrasound-Enhanced TNK-Tissue Plasminogen Activator-Mediated Thrombolysis. J Stroke Cerebrovasc Dis. 2016 Aug;25(8):1864-77. doi: 10.1016/j.jstrokecerebrovasdis.2016.03.051.

Hemorrhagic Stroke

Ilyas A, Chen CJ, Ding D, Romeo A, Buell TJ, Wang TR, Kalani MYS, Park MS. Magnetic resonance-guided, high-intensity focused ultrasound sonolysis: potential applications for stroke. Neurosurg Focus. 2018 Feb;44(2):E12. doi: 10.3171/2017.11.FOCUS17608.

Yang W, Zhou Y. Effect of pulse repetition frequency of high-intensity focused ultrasound on in vitro thrombolysis. Ultrason Sonochem. 2017 Mar;35(Pt A):152-160. doi: 10.1016/j.ultsonch.2016.09.014.

Harnof S, Zibly Z, Hananel A, Monteith S, Grinfeld J, Schiff G, Kulbatski I, Kassell N. Potential of Magnetic Resonance-guided Focused Ultrasound for Intracranial Hemorrhage: An In Vivo Feasibility Study. J Stroke Cerebrovasc Dis. 2014 Jul;23(6):1585-91.

Click here for additional references from PubMed.