Atherosclerosis

Focused Ultrasound Therapy

arly Stage squareFocused ultrasound is an early-stage, noninvasive, therapeutic technology with the potential to improve the quality of life and decrease the cost of care for patients with atherosclerosis. This novel technology focuses beams of ultrasound energy precisely and accurately on targets deep in the body without damaging surrounding normal tissue. Where the beams converge, the ultrasound produces a variety of biological effects enabling atherosclerosis to be treated without surgery. Mechanical fractionation of atherosclerotic plaques or ultrasound-enhanced delivery of drugs to treat the disease are being investigated as potential new therapies.

The primary options for treatment of atherosclerosis include medication, minimally invasive procedures and major surgery.

For certain patients, focused ultrasound could provide a noninvasive alternative to surgery with less risk of complications and lower cost.

Advantages:

  • Focused ultrasound is noninvasive, so it does not carry added concerns like surgical wound healing or infection.
  • Focused ultrasound can reach the desired target without damaging surrounding tissue.
  • It can be repeated, if necessary.

Clinical Trials

There is a clinical trial that is looking at treatment of atherosclerosis in peripheral arteries. It involves using stem cells alone or in combination with focused ultrasound. 

See a full list of atherosclerosis clinical trials >

See a list of laboratory research sites >

Regulatory Approval and Reimbursement

Focused ultrasound treatment for atherosclerosis is not yet approved by regulatory bodies or covered by medical insurance companies.

Notable Papers

Almekkaway MK, Shehata IA, Ebbini ES. Anatomical-based model for simulation of HIFU-induced lesions in atherosclerotic plaques. Int J Hyperthermia. 2015 Jun;31(4):433-42. doi: 10.3109/02656736.2015.1018966.

Xu S, Zong Y, Feng Y, Liu R, Liu X, Hu Y, Han S, Wan M. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution. Ultrason Sonochem. 2014 Jul 9. pii: S1350-4177(14)00227-2. doi: 10.1016/j.ultsonch.2014.06.024.

Hölscher T, Ahadi G, Fisher D, Zadicario E, Voie A. MR-guided focused ultrasound for acute stroke: a rabbit model. Stroke. 2013 Jun;44(6 Supp 1):S58-60.

Lapchak PA, Kikuchi K, Butte P, Hölscher T. Development of transcranial sonothrombolysis as an alternative stroke therapy: incremental scientific advances toward overcoming substantial barriers. Expert Rev Med Devices. 2013 Mar;10(2):201-13.

Click here for additional references from PubMed.