A Faster Skull Assessment Technique for Transcranial Focused Ultrasound Planning

Published:

Computationally Efficient Transcranial Ultrasonic Focusing: Taking Advantage of the High Correlation Length of the Human Skull

Aubry skull correction video smBefore a patient can undergo focused ultrasound brain treatment, the medical team must assess the structure of the skull bone, and this is done using a CT scan. The reason for this test is that ultrasound does not travel in a direct path through bone: the skull distorts the ultrasound waves. Focusing the ultrasound, therefore, depends on calculating the degree of the distortions and then correcting them. Every bit of improvement in the accuracy of the calculation could be beneficial to the patient, and researchers are working on increasingly refined calculations. Advanced computer simulations now take into account not only the thickness but also the detailed internal structure of the skull bone, but the three-dimensional calculations typically take about two hours. Now, researchers at Physics for Medicine Paris have developed and tested a novel method that can complete the calculation in as little as 30 seconds. After validating the method on several different skulls, the only question that remains is how quickly it can be translated to a clinical setting. See IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >